Cargando…

Data Mining and Constraint Programming Foundations of a Cross-Disciplinary Approach /

A successful integration of constraint programming and data mining has the potential to lead to a new ICT paradigm with far reaching implications. It could change the face of data mining and machine learning, as well as constraint programming technology. It would not only allow one to use data minin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Bessiere, Christian (Editor ), De Raedt, Luc (Editor ), Kotthoff, Lars (Editor ), Nijssen, Siegfried (Editor ), O'Sullivan, Barry (Editor ), Pedreschi, Dino (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes in Artificial Intelligence, 10101
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-50137-6
003 DE-He213
005 20221012192003.0
007 cr nn 008mamaa
008 161202s2016 sz | s |||| 0|eng d
020 |a 9783319501376  |9 978-3-319-50137-6 
024 7 |a 10.1007/978-3-319-50137-6  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Data Mining and Constraint Programming  |h [electronic resource] :  |b Foundations of a Cross-Disciplinary Approach /  |c edited by Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen, Barry O'Sullivan, Dino Pedreschi. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 349 p. 73 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 10101 
505 0 |a Introduction to Combinatorial Optimisation in Numberjack -- Data Mining and Constraints: An Overview -- New Approaches to Constraint Acquisition -- ModelSeeker: Extracting Global Constraint Models from Positive Examples -- Learning Constraint Satisfaction Problems: An ILP Perspective -- Learning Modulo Theories -- Algorithm Selection for Combinatorial Search Problems: A Survey -- Adapting Consistency in Constraint Solving -- Modeling in MiningZinc -- Partition-Based Clustering Using Constraint Optimisation -- The Inductive Constraint Programming Loop -- ICON Loop Carpooling Show Case -- ICON Loop Health Show Case -- ICON Loop Energy Show Case. 
520 |a A successful integration of constraint programming and data mining has the potential to lead to a new ICT paradigm with far reaching implications. It could change the face of data mining and machine learning, as well as constraint programming technology. It would not only allow one to use data mining techniques in constraint programming to identify and update constraints and optimization criteria, but also to employ constraints and criteria in data mining and machine learning in order to discover models compatible with prior knowledge. This book reports on some key results obtained on this integrated and cross- disciplinary approach within the European FP7 FET Open project no. 284715 on "Inductive Constraint Programming" and a number of associated workshops and Dagstuhl seminars. The book is structured in five parts: background; learning to model; learning to solve; constraint programming for data mining; and showcases. . 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 0 |a Computer simulation. 
650 0 |a Algorithms. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Algorithms. 
650 2 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Bessiere, Christian.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a De Raedt, Luc.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kotthoff, Lars.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Nijssen, Siegfried.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a O'Sullivan, Barry.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pedreschi, Dino.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319501369 
776 0 8 |i Printed edition:  |z 9783319501383 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 10101 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-50137-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)