Cargando…

Renewal Theory for Perturbed Random Walks and Similar Processes

This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insur...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Iksanov, Alexander (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edición:1st ed. 2016.
Colección:Probability and Its Applications,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-49113-4
003 DE-He213
005 20220114013005.0
007 cr nn 008mamaa
008 161210s2016 sz | s |||| 0|eng d
020 |a 9783319491134  |9 978-3-319-49113-4 
024 7 |a 10.1007/978-3-319-49113-4  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Iksanov, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Renewal Theory for Perturbed Random Walks and Similar Processes  |h [electronic resource] /  |c by Alexander Iksanov. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XIV, 250 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications,  |x 2297-0398 
505 0 |a Preface -- Perturbed random walks -- Affine recurrences -- Random processes with immigration -- Application to branching random walk -- Application to the Bernoulli sieve -- Appendix -- Bibliography. 
520 |a This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade. The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both with and without scaling. Chapters four and five address branching random walks and the Bernoulli sieve, respectively, and their connection to the results of the previous chapters. With many motivating examples, this book appeals to both theoretical and applied probabilists. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319491110 
776 0 8 |i Printed edition:  |z 9783319491127 
776 0 8 |i Printed edition:  |z 9783319840857 
830 0 |a Probability and Its Applications,  |x 2297-0398 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-49113-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)