|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-48936-0 |
003 |
DE-He213 |
005 |
20220116115508.0 |
007 |
cr nn 008mamaa |
008 |
170112s2016 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319489360
|9 978-3-319-48936-0
|
024 |
7 |
|
|a 10.1007/978-3-319-48936-0
|2 doi
|
050 |
|
4 |
|a QA370-380
|
072 |
|
7 |
|a PBKJ
|2 bicssc
|
072 |
|
7 |
|a MAT007000
|2 bisacsh
|
072 |
|
7 |
|a PBKJ
|2 thema
|
082 |
0 |
4 |
|a 515.35
|2 23
|
100 |
1 |
|
|a Borthwick, David.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Introduction to Partial Differential Equations
|h [electronic resource] /
|c by David Borthwick.
|
250 |
|
|
|a 1st ed. 2016.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a XVI, 283 p. 68 illus., 61 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Universitext,
|x 2191-6675
|
505 |
0 |
|
|a 1. Introduction -- 2. Preliminaries -- 3. Conservation Equations and Characteristics -- 4. The Wave Equation -- 5. Separation of Variables -- 6. The Heat Equation -- 7. Function Spaces -- 8. Fourier Series -- 9. Maximum Principles -- 10. Weak Solutions -- 11. Variational Methods -- 12. Distributions -- 13. The Fourier Transform -- A. Appendix: Analysis Foundations -- References -- Notation Guide -- Index.
|
520 |
|
|
|a This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
1 |
4 |
|a Differential Equations.
|
650 |
2 |
4 |
|a Mathematical Physics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319489346
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319489353
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319840512
|
830 |
|
0 |
|a Universitext,
|x 2191-6675
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-48936-0
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|