Cargando…

Dynamic Optimization Deterministic and Stochastic Models /

This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hinderer, Karl (Autor), Rieder, Ulrich (Autor), Stieglitz, Michael (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-48814-1
003 DE-He213
005 20220113045442.0
007 cr nn 008mamaa
008 170112s2016 sz | s |||| 0|eng d
020 |a 9783319488141  |9 978-3-319-48814-1 
024 7 |a 10.1007/978-3-319-48814-1  |2 doi 
050 4 |a T57.6-57.97 
050 4 |a T55.4-60.8 
072 7 |a KJT  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Hinderer, Karl.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamic Optimization  |h [electronic resource] :  |b Deterministic and Stochastic Models /  |c by Karl Hinderer, Ulrich Rieder, Michael Stieglitz. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXII, 530 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Introduction and Organization of the Book -- Part I Deterministic Models -- Part II Markovian Decision Processes -- Part III Generalizations of Markovian Decision Processes -- Part IV Appendix. 
520 |a This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Mathematical optimization. 
650 0 |a Probabilities. 
650 1 4 |a Operations Research, Management Science . 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Discrete Optimization. 
650 2 4 |a Probability Theory. 
700 1 |a Rieder, Ulrich.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Stieglitz, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319488134 
776 0 8 |i Printed edition:  |z 9783319488158 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-48814-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)