Cargando…

Geometry and Dynamics of Integrable Systems

Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bolsinov, Alexey (Autor), Morales-Ruiz, Juan J. (Autor), Zung, Nguyen Tien (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Miranda, Eva (Editor ), Matveev, Vladimir (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edición:1st ed. 2016.
Colección:Advanced Courses in Mathematics - CRM Barcelona,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-33503-2
003 DE-He213
005 20220120124748.0
007 cr nn 008mamaa
008 161028s2016 sz | s |||| 0|eng d
020 |a 9783319335032  |9 978-3-319-33503-2 
024 7 |a 10.1007/978-3-319-33503-2  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Bolsinov, Alexey.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometry and Dynamics of Integrable Systems  |h [electronic resource] /  |c by Alexey Bolsinov, Juan J. Morales-Ruiz, Nguyen Tien Zung ; edited by Eva Miranda, Vladimir Matveev. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a VIII, 140 p. 22 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0312 
505 0 |a Integrable Systems and Differential Galois Theory -- Singularities of bi-Hamiltonian Systems and Stability Analysis -- Geometry of Integrable non-Hamiltonian Systems. 
520 |a Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mirror symmetry). As such, the book will appeal to experts with a wide range of backgrounds. 
650 0 |a Dynamical systems. 
650 0 |a Geometry, Differential. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Field Theory and Polynomials. 
700 1 |a Morales-Ruiz, Juan J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zung, Nguyen Tien.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Miranda, Eva.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Matveev, Vladimir.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319335025 
776 0 8 |i Printed edition:  |z 9783319335049 
830 0 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0312 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-33503-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)