Cargando…

Estimation and Testing Under Sparsity École d'Été de Probabilités de Saint-Flour XLV - 2015 /

Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be v...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: van de Geer, Sara (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:École d'Été de Probabilités de Saint-Flour ; 2159
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-32774-7
003 DE-He213
005 20220119215518.0
007 cr nn 008mamaa
008 160628s2016 sz | s |||| 0|eng d
020 |a 9783319327747  |9 978-3-319-32774-7 
024 7 |a 10.1007/978-3-319-32774-7  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a van de Geer, Sara.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Estimation and Testing Under Sparsity  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XLV - 2015 /  |c by Sara van de Geer. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 274 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour ;  |v 2159 
505 0 |a 1 Introduction.- The Lasso.- 3 The square-root Lasso.- 4 The bias of the Lasso and worst possible sub-directions.- 5 Confidence intervals using the Lasso.- 6 Structured sparsity -- 7 General loss with norm-penalty -- 8 Empirical process theory for dual norms.- 9 Probability inequalities for matrices.- 10 Inequalities for the centred empirical risk and its derivative.- 11 The margin condition.- 12 Some worked-out examples.- 13 Brouwer's fixed point theorem and sparsity.- 14 Asymptotically linear estimators of the precision matrix.- 15 Lower bounds for sparse quadratic forms.- 16 Symmetrization, contraction and concentration.- 17 Chaining including concentration.- 18 Metric structure of convex hulls. 
520 |a Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability and Statistics in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319327730 
776 0 8 |i Printed edition:  |z 9783319327754 
830 0 |a École d'Été de Probabilités de Saint-Flour ;  |v 2159 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-32774-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)