Cargando…

Robust Optimization of Spline Models and Complex Regulatory Networks Theory, Methods and Applications /

This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Özmen, Ayşe (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Contributions to Management Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30800-5
003 DE-He213
005 20220120113453.0
007 cr nn 008mamaa
008 160511s2016 sz | s |||| 0|eng d
020 |a 9783319308005  |9 978-3-319-30800-5 
024 7 |a 10.1007/978-3-319-30800-5  |2 doi 
050 4 |a T57.6-.97 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
072 7 |a KJMD  |2 thema 
082 0 4 |a 658.403  |2 23 
100 1 |a Özmen, Ayşe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Robust Optimization of Spline Models and Complex Regulatory Networks  |h [electronic resource] :  |b Theory, Methods and Applications /  |c by Ayşe Özmen. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 139 p. 22 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Contributions to Management Science,  |x 2197-716X 
505 0 |a Introduction -- Mathematical Methods Used -- New Robust Analytic Tools -- Spline Regression Models for Complex Multi-Model Regulatory Networks -- Robust Optimization in Spline Regression Models for Regulatory Networks Under Polyhedral Uncertainty -- Real-World Application with Our Robust Tools -- Conclusion and Outlook. . 
520 |a This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS - and robust (conic) generalized partial linear models - R(C)GPLM - under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research. 
650 0 |a Operations research. 
650 0 |a Mathematical optimization. 
650 0 |a Mathematical models. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Environmental sciences-Mathematics. 
650 1 4 |a Operations Research and Decision Theory. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Mathematical Applications in Environmental Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319307992 
776 0 8 |i Printed edition:  |z 9783319308012 
776 0 8 |i Printed edition:  |z 9783319808901 
830 0 |a Contributions to Management Science,  |x 2197-716X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30800-5  |z Texto Completo 
912 |a ZDB-2-BUM 
912 |a ZDB-2-SXBM 
950 |a Business and Management (SpringerNature-41169) 
950 |a Business and Management (R0) (SpringerNature-43719)