Cargando…

Real Analysis

This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concept...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Loeb, Peter A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30744-2
003 DE-He213
005 20220118092552.0
007 cr nn 008mamaa
008 160505s2016 sz | s |||| 0|eng d
020 |a 9783319307442  |9 978-3-319-30744-2 
024 7 |a 10.1007/978-3-319-30744-2  |2 doi 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKB  |2 thema 
082 0 4 |a 515.8  |2 23 
100 1 |a Loeb, Peter A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Real Analysis  |h [electronic resource] /  |c by Peter A. Loeb. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XII, 274 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Set Theory and Numbers -- Measure on the Real Line -- Measurable Functions -- Integration -- Differentiation and Integration -- General Measure Spaces -- Introduction to Metric and Normed Spaces -- Hilbert Spaces -- Topological Spaces -- Measure Construction -- Banach Spaces -- Appendices -- References. . 
520 |a This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors. The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach. The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support. To correctly discuss weak limits of measures, one needs the notion of a topological space rather than just a metric space, so general topology is introduced in terms of a base of neighborhoods at a point. The development of results then proceeds in parallel with results for metric spaces, where the base is generated by balls centered at a point. The text concludes with appendices on covering theorems for higher dimensions and a short introduction to nonstandard analysis including important applications to probability theory and mathematical economics. . 
650 0 |a Functions of real variables. 
650 0 |a Functional analysis. 
650 0 |a Measure theory. 
650 1 4 |a Real Functions. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Measure and Integration. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319307428 
776 0 8 |i Printed edition:  |z 9783319307435 
776 0 8 |i Printed edition:  |z 9783319808796 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30744-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)