Cargando…

Probabilistic Models of Population Evolution Scaling Limits, Genealogies and Interactions /

This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pardoux, Étienne (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Stochastics in Biological Systems, 1.6
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30328-4
003 DE-He213
005 20220115221441.0
007 cr nn 008mamaa
008 160617s2016 sz | s |||| 0|eng d
020 |a 9783319303284  |9 978-3-319-30328-4 
024 7 |a 10.1007/978-3-319-30328-4  |2 doi 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PBW  |2 bicssc 
072 7 |a PSA  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
100 1 |a Pardoux, Étienne.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Probabilistic Models of Population Evolution  |h [electronic resource] :  |b Scaling Limits, Genealogies and Interactions /  |c by Étienne Pardoux. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VIII, 125 p. 6 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastics in Biological Systems,  |x 2364-2300 ;  |v 1.6 
505 0 |a Introduction -- Branching Processes -- Convergence to a Continuous State Branching Process -- Continuous State Branching Process (CSBP) -- Genealogies -- Models of Finite Population with Interaction -- Convergence to a Continuous State Model -- Continuous Model with Interaction -- Appendix. 
520 |a This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications. Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtained his PhD in 1975 at University of Paris-Sud. 
650 0 |a Biomathematics. 
650 0 |a Probabilities. 
650 0 |a Ecology . 
650 1 4 |a Mathematical and Computational Biology. 
650 2 4 |a Probability Theory. 
650 2 4 |a Theoretical and Statistical Ecology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319303260 
776 0 8 |i Printed edition:  |z 9783319303277 
830 0 |a Stochastics in Biological Systems,  |x 2364-2300 ;  |v 1.6 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30328-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)