Cargando…

Simulation-Driven Design by Knowledge-Based Response Correction Techniques

Focused on efficient simulation-driven multi-fidelity optimization techniques, this monograph on simulation-driven optimization covers simulations utilizing physics-based low-fidelity models, often based on coarse-discretization simulations or other types of simplified physics representations, such...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Koziel, Slawomir (Autor), Leifsson, Leifur (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30115-0
003 DE-He213
005 20220117133653.0
007 cr nn 008mamaa
008 160513s2016 sz | s |||| 0|eng d
020 |a 9783319301150  |9 978-3-319-30115-0 
024 7 |a 10.1007/978-3-319-30115-0  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Koziel, Slawomir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Simulation-Driven Design by Knowledge-Based Response Correction Techniques  |h [electronic resource] /  |c by Slawomir Koziel, Leifur Leifsson. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 262 p. 167 illus., 93 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Simulation-Driven Design -- Fundamentals of Numerical Optimization -- Introduction to Surrogate-Based Modeling and Surrogate-Based Optimization -- Design Optimization Using Response Correction Techniques -- Surrogate-Based Optimization Using Parametric Response Correction -- Non-Parametric Response Correction Techniques -- Expedited Simulation-Driven Optimization Using Adaptively Adjusted Design Specification -- Surrogate-Assisted Design Optimization Using Response Features -- Enhancing Response Correction Techniques by Adjoint Sensitivity -- Multi-Objective Optimization Using Variable-Fidelity Models and Response Correction -- Physics-Base Surrogate Models Using Response Correction -- Summary and Discussion -- References. . 
520 |a Focused on efficient simulation-driven multi-fidelity optimization techniques, this monograph on simulation-driven optimization covers simulations utilizing physics-based low-fidelity models, often based on coarse-discretization simulations or other types of simplified physics representations, such as analytical models. The methods presented in the book exploit as much as possible any knowledge about the system or device of interest embedded in the low-fidelity model with the purpose of reducing the computational overhead of the design process. Most of the techniques described in the book are of response correction type and can be split into parametric (usually based on analytical formulas) and non-parametric, i.e., not based on analytical formulas. The latter, while more complex in implementation, tend to be more efficient. The book presents a general formulation of response correction techniques as well as a number of specific methods, including those based on correcting the low-fidelity model response (output space mapping, manifold mapping, adaptive response correction and shape-preserving response prediction), as well as on suitable modification of design specifications. Detailed formulations, application examples and the discussion of advantages and disadvantages of these techniques are also included. The book demonstrates the use of the discussed techniques for solving real-world engineering design problems, including applications in microwave engineering, antenna design, and aero/hydrodynamics. 
650 0 |a Mathematical optimization. 
650 0 |a Mathematical models. 
650 0 |a Mathematics-Data processing. 
650 1 4 |a Discrete Optimization. 
650 2 4 |a Continuous Optimization. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Leifsson, Leifur.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319301136 
776 0 8 |i Printed edition:  |z 9783319301143 
776 0 8 |i Printed edition:  |z 9783319807263 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30115-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)