Cargando…

Divergent Series, Summability and Resurgence III Resurgent Methods and the First Painlevé Equation /

The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Delabaere, Eric (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes in Mathematics, 2155
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-29000-3
003 DE-He213
005 20220118155746.0
007 cr nn 008mamaa
008 160628s2016 sz | s |||| 0|eng d
020 |a 9783319290003  |9 978-3-319-29000-3 
024 7 |a 10.1007/978-3-319-29000-3  |2 doi 
050 4 |a QA292 
050 4 |a QA295 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515.24  |2 23 
100 1 |a Delabaere, Eric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Divergent Series, Summability and Resurgence III  |h [electronic resource] :  |b Resurgent Methods and the First Painlevé Equation /  |c by Eric Delabaere. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXII, 230 p. 35 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2155 
505 0 |a Avant-Propos -- Preface to the three volumes -- Preface to this volume -- Some elements about ordinary differential equations -- The first Painlevé equation -- Tritruncated solutions for the first Painlevé equation -- A step beyond Borel-Laplace summability -- Transseries and formal integral for the first Painlevé equation -- Truncated solutions for the first Painlevé equation -- Supplements to resurgence theory -- Resurgent structure for the first Painlevé equation -- Index. 
520 |a The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called "bridge equation", which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. The prerequisites are a working knowledge of complex analysis at the first-year graduate level and of the theory of resurgence, as presented in volume 1. . 
650 0 |a Sequences (Mathematics). 
650 0 |a Differential equations. 
650 0 |a Functions of complex variables. 
650 0 |a Special functions. 
650 1 4 |a Sequences, Series, Summability. 
650 2 4 |a Differential Equations. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Special Functions. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319289991 
776 0 8 |i Printed edition:  |z 9783319290010 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2155 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-29000-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)