Cargando…

Nonlocal Diffusion and Applications

Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schröd...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bucur, Claudia (Autor), Valdinoci, Enrico (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes of the Unione Matematica Italiana, 20
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-28739-3
003 DE-He213
005 20220113052031.0
007 cr nn 008mamaa
008 160408s2016 sz | s |||| 0|eng d
020 |a 9783319287393  |9 978-3-319-28739-3 
024 7 |a 10.1007/978-3-319-28739-3  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Bucur, Claudia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonlocal Diffusion and Applications  |h [electronic resource] /  |c by Claudia Bucur, Enrico Valdinoci. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 155 p. 26 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 20 
520 |a Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance. 
650 0 |a Differential equations. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Mathematical analysis. 
650 0 |a Functional analysis. 
650 1 4 |a Differential Equations. 
650 2 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Integral Transforms and Operational Calculus. 
650 2 4 |a Functional Analysis. 
700 1 |a Valdinoci, Enrico.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319287386 
776 0 8 |i Printed edition:  |z 9783319287409 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 20 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-28739-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)