Loading…

Functional Analysis and the Feynman Operator Calculus

This book provides the mathematical foundations for Feynman's operator calculus and for the Feynman path integral formulation of quantum mechanics as a natural extension of analysis and functional analysis to the infinite-dimensional setting. In one application, the results are used to prove th...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Authors: Gill, Tepper (Author), Zachary, Woodford (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:Inglés
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Subjects:
Online Access:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-27595-6
003 DE-He213
005 20220117044133.0
007 cr nn 008mamaa
008 160330s2016 sz | s |||| 0|eng d
020 |a 9783319275956  |9 978-3-319-27595-6 
024 7 |a 10.1007/978-3-319-27595-6  |2 doi 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Gill, Tepper.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Functional Analysis and the Feynman Operator Calculus  |h [electronic resource] /  |c by Tepper Gill, Woodford Zachary. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIX, 354 p. 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminary Background -- Integration on Infinite-dimensional Spaces -- HK-Integral and HK-Spaces -- Analysis on Hilbert Space -- Operators on Banach Space -- Spaces of von Neumann Type -- The Feynman Operator Calculus -- Applications of the Feynman Calculus. 
520 |a This book provides the mathematical foundations for Feynman's operator calculus and for the Feynman path integral formulation of quantum mechanics as a natural extension of analysis and functional analysis to the infinite-dimensional setting. In one application, the results are used to prove the last two remaining conjectures of Freeman Dyson for quantum electrodynamics. In another application, the results are used to unify methods and weaken domain requirements for non-autonomous evolution equations. Other applications include a general theory of Lebesgue measure on Banach spaces with a Schauder basis and a new approach to the structure theory of operators on uniformly convex Banach spaces. This book is intended for advanced graduate students and researchers. 
650 0 |a Functional analysis. 
650 0 |a Mathematical physics. 
650 0 |a Operator theory. 
650 1 4 |a Functional Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Operator Theory. 
700 1 |a Zachary, Woodford.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319275932 
776 0 8 |i Printed edition:  |z 9783319275949 
776 0 8 |i Printed edition:  |z 9783319801803 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-27595-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)