Cargando…

Building Dialogue POMDPs from Expert Dialogues An end-to-end approach /

This book discusses the Partially Observable Markov Decision Process (POMDP) framework applied in dialogue systems. It presents POMDP as a formal framework to represent uncertainty explicitly while supporting automated policy solving. The authors propose and implement an end-to-end learning approach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chinaei, Hamidreza (Autor), Chaib-draa, Brahim (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-26200-0
003 DE-He213
005 20220126172306.0
007 cr nn 008mamaa
008 160208s2016 sz | s |||| 0|eng d
020 |a 9783319262000  |9 978-3-319-26200-0 
024 7 |a 10.1007/978-3-319-26200-0  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Chinaei, Hamidreza.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Building Dialogue POMDPs from Expert Dialogues  |h [electronic resource] :  |b An end-to-end approach /  |c by Hamidreza Chinaei, Brahim Chaib-draa. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VII, 119 p. 22 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
505 0 |a 1 Introduction -- 2 A few words on topic modeling -- 3 Sequential decision making in spoken dialog management -- 4 Learning the dialog POMDP model components -- 5 Learning the reward function -- 6 Application on healthcare dialog management -- 7 Conclusions and future work. 
520 |a This book discusses the Partially Observable Markov Decision Process (POMDP) framework applied in dialogue systems. It presents POMDP as a formal framework to represent uncertainty explicitly while supporting automated policy solving. The authors propose and implement an end-to-end learning approach for dialogue POMDP model components. Starting from scratch, they present the state, the transition model, the observation model and then finally the reward model from unannotated and noisy dialogues. These altogether form a significant set of contributions that can potentially inspire substantial further work. This concise manuscript is written in a simple language, full of illustrative examples, figures, and tables. Provides insights on building dialogue systems to be applied in real domain Illustrates learning dialogue POMDP model components from unannotated dialogues in a concise format Introduces an end-to-end approach that makes use of unannotated and noisy dialogue for learning each component of dialogue POMDPs. 
650 0 |a Signal processing. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Human-computer interaction. 
650 0 |a Telecommunication. 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computational Linguistics. 
700 1 |a Chaib-draa, Brahim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319261980 
776 0 8 |i Printed edition:  |z 9783319261997 
830 0 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-26200-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)