Cargando…

Text Analysis Pipelines Towards Ad-hoc Large-Scale Text Mining /

This monograph proposes a comprehensive and fully automatic approach to designing text analysis pipelines for arbitrary information needs that are optimal in terms of run-time efficiency and that robustly mine relevant information from text of any kind. Based on state-of-the-art techniques from mach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wachsmuth, Henning (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Theoretical Computer Science and General Issues, 9383
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-25741-9
003 DE-He213
005 20230329134754.0
007 cr nn 008mamaa
008 151202s2015 sz | s |||| 0|eng d
020 |a 9783319257419  |9 978-3-319-25741-9 
024 7 |a 10.1007/978-3-319-25741-9  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
100 1 |a Wachsmuth, Henning.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Text Analysis Pipelines  |h [electronic resource] :  |b Towards Ad-hoc Large-Scale Text Mining /  |c by Henning Wachsmuth. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 302 p. 74 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theoretical Computer Science and General Issues,  |x 2512-2029 ;  |v 9383 
520 |a This monograph proposes a comprehensive and fully automatic approach to designing text analysis pipelines for arbitrary information needs that are optimal in terms of run-time efficiency and that robustly mine relevant information from text of any kind. Based on state-of-the-art techniques from machine learning and other areas of artificial intelligence, novel pipeline construction and execution algorithms are developed and implemented in prototypical software. Formal analyses of the algorithms and extensive empirical experiments underline that the proposed approach represents an essential step towards the ad-hoc use of text mining in web search and big data analytics. Both web search and big data analytics aim to fulfill peoples' needs for information in an adhoc manner. The information sought for is often hidden in large amounts of natural language text. Instead of simply returning links to potentially relevant texts, leading search and analytics engines have started to directly mine relevant information from the texts. To this end, they execute text analysis pipelines that may consist of several complex information-extraction and text-classification stages. Due to practical requirements of efficiency and robustness, however, the use of text mining has so far been limited to anticipated information needs that can be fulfilled with rather simple, manually constructed pipelines. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Application software. 
650 0 |a Artificial intelligence. 
650 0 |a Machine theory. 
650 0 |a Database management. 
650 0 |a Computer science. 
650 1 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Formal Languages and Automata Theory. 
650 2 4 |a Database Management. 
650 2 4 |a Theory of Computation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319257402 
776 0 8 |i Printed edition:  |z 9783319257426 
830 0 |a Theoretical Computer Science and General Issues,  |x 2512-2029 ;  |v 9383 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-25741-9  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)