Chargement en cours…

Introduction to HPC with MPI for Data Science

This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions. Divided into two...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Nielsen, Frank (Auteur)
Collectivité auteur: SpringerLink (Online service)
Format: Électronique eBook
Langue:Inglés
Publié: Cham : Springer International Publishing : Imprint: Springer, 2016.
Édition:1st ed. 2016.
Collection:Undergraduate Topics in Computer Science,
Sujets:
Accès en ligne:Texto Completo
Table des matières:
  • Preface
  • Part 1: High Performance Computing (HPC) with the Message Passing Interface (MPI)
  • A Glance at High Performance Computing (HPC)
  • Introduction to MPI: The Message Passing Interface
  • Topology of Interconnection Networks
  • Parallel Sorting
  • Parallel Linear Algebra.-The MapReduce Paradigm
  • Part 11: High Performance Computing for Data Science
  • Partition-based Clustering with k means
  • Hierarchical Clustering
  • Supervised Learning: Practice and Theory of Classification with k NN rule
  • Fast Approximate Optimization to High Dimensions with Core-sets and Fast Dimension Reduction
  • Parallel Algorithms for Graphs
  • Appendix A: Written Exam
  • Appendix B: SLURM: A resource manager and job scheduler on clusters of machines
  • Appendix C: List of Figures
  • Appendix D: List of Tables
  • Appendix E: Index.