Model-Free Prediction and Regression A Transformation-Based Approach to Inference /
The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to...
Cote: | Libro Electrónico |
---|---|
Auteur principal: | Politis, Dimitris N. (Auteur) |
Collectivité auteur: | SpringerLink (Online service) |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Édition: | 1st ed. 2015. |
Collection: | Frontiers in Probability and the Statistical Sciences,
|
Sujets: | |
Accès en ligne: | Texto Completo |
Documents similaires
-
Bayesian Statistics from Methods to Models and Applications Research from BAYSM 2014 /
Publié: (2015) -
Model Choice in Nonnested Families
par: Pereira, Basilio de Bragança, et autres
Publié: (2016) -
Regression Models, Methods and Applications /
par: Fahrmeir, Ludwig, et autres
Publié: (2013) -
Advanced Statistical Methods for the Analysis of Large Data-Sets
Publié: (2012) -
Exploring Research Frontiers in Contemporary Statistics and Econometrics A Festschrift for Léopold Simar /
Publié: (2012)