Cargando…

Model-Free Prediction and Regression A Transformation-Based Approach to Inference /

The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Politis, Dimitris N. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Frontiers in Probability and the Statistical Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-21347-7
003 DE-He213
005 20230810184658.0
007 cr nn 008mamaa
008 151113s2015 sz | s |||| 0|eng d
020 |a 9783319213477  |9 978-3-319-21347-7 
024 7 |a 10.1007/978-3-319-21347-7  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Politis, Dimitris N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Model-Free Prediction and Regression  |h [electronic resource] :  |b A Transformation-Based Approach to Inference /  |c by Dimitris N. Politis. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 246 p. 22 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Probability and the Statistical Sciences,  |x 2624-9995 
505 0 |a Prediction: some heuristic notions -- The Model-free Prediction Principle -- Model-based prediction in regression -- Model-free prediction in regression -- Model-free vs. model-based confidence intervals -- Linear time series and optimal linear prediction -- Model-based prediction in autoregression -- Model-free inference for Markov processes -- Predictive inference for locally stationary time series -- Model-free vs. model-based volatility prediction. 
520 |a The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful. Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics  |x Data processing. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319213460 
776 0 8 |i Printed edition:  |z 9783319213484 
776 0 8 |i Printed edition:  |z 9783319352497 
830 0 |a Frontiers in Probability and the Statistical Sciences,  |x 2624-9995 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-21347-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)