Regression Modeling Strategies With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis /
This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Edición: | 2nd ed. 2015. |
Colección: | Springer Series in Statistics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction
- General Aspects of Fitting Regression Models
- Missing Data
- Multivariable Modeling Strategies
- Describing, Resampling, Validating and Simplifying the Model
- R Software
- Modeling Longitudinal Responses using Generalized Least Squares
- Case Study in Data Reduction
- Overview of Maximum Likelihood Estimation
- Binary Logistic Regression
- Binary Logistic Regression Case Study 1
- Logistic Model Case Study 2: Survival of Titanic Passengers
- Ordinal Logistic Regression
- Case Study in Ordinal Regression, Data Reduction and Penalization.- Regression Models for Continuous Y and Case Study in Ordinal Regression
- Transform-Both-Sides Regression
- Introduction to Survival Analysis
- Parametric Survival Models
- Case Study in Parametric Survival Modeling and Model Approximation
- Cox Proportional Hazards Regression Model
- Case Study in Cox Regression
- Appendix. .