Cargando…

Geometric Continuum Mechanics and Induced Beam Theories

This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: R. Eugster, Simon (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Applied and Computational Mechanics, 75
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-16495-3
003 DE-He213
005 20220203103051.0
007 cr nn 008mamaa
008 150319s2015 sz | s |||| 0|eng d
020 |a 9783319164953  |9 978-3-319-16495-3 
024 7 |a 10.1007/978-3-319-16495-3  |2 doi 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a SCI096000  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620.105  |2 23 
100 1 |a R. Eugster, Simon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Continuum Mechanics and Induced Beam Theories  |h [electronic resource] /  |c by Simon R. Eugster. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a IX, 146 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1860-0816 ;  |v 75 
505 0 |a Introduction -- Part I Geometric Continuum Mechanics -- Part II Induced Beam Theories. 
520 |a This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Physics. 
650 1 4 |a Solid Mechanics. 
650 2 4 |a Classical and Continuum Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319164960 
776 0 8 |i Printed edition:  |z 9783319164946 
776 0 8 |i Printed edition:  |z 9783319368511 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1860-0816 ;  |v 75 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-16495-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)