Cargando…

Acoustic Modeling for Emotion Recognition

This book presents state of art research in speech emotion recognition. Readers are first presented with basic research and applications - gradually more advance information is provided, giving readers comprehensive guidance for classify emotions through speech. Simulated databases are used and resu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Anne, Koteswara Rao (Autor), Kuchibhotla, Swarna (Autor), Vankayalapati, Hima Deepthi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-15530-2
003 DE-He213
005 20220116043138.0
007 cr nn 008mamaa
008 150314s2015 sz | s |||| 0|eng d
020 |a 9783319155302  |9 978-3-319-15530-2 
024 7 |a 10.1007/978-3-319-15530-2  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Anne, Koteswara Rao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Acoustic Modeling for Emotion Recognition  |h [electronic resource] /  |c by Koteswara Rao Anne, Swarna Kuchibhotla, Hima Deepthi Vankayalapati. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VII, 66 p. 24 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
505 0 |a Introduction -- Emotion Recognition using Prosodic features -- Emotion Recognition using Spectral features -- Emotional Speech Corpora -- Classification Models -- Comparative Analysis of Classifiers in emotion recognition -- Summary and Conclusions. 
520 |a This book presents state of art research in speech emotion recognition. Readers are first presented with basic research and applications - gradually more advance information is provided, giving readers comprehensive guidance for classify emotions through speech. Simulated databases are used and results extensively compared, with the features and the algorithms implemented using MATLAB. Various emotion recognition models like Linear Discriminant Analysis (LDA), Regularized Discriminant Analysis (RDA), Support Vector Machines (SVM) and K-Nearest neighbor (KNN) and are explored in detail using prosody and spectral features, and feature fusion techniques. 
650 0 |a Signal processing. 
650 0 |a Computational linguistics. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Human-computer interaction. 
650 0 |a Acoustics. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computational Linguistics. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Acoustics. 
700 1 |a Kuchibhotla, Swarna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vankayalapati, Hima Deepthi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319155319 
776 0 8 |i Printed edition:  |z 9783319155296 
830 0 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-15530-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)