Cargando…

Practical Approaches to Causal Relationship Exploration

This brief presents four practical methods to effectively explore causal relationships, which are often used for explanation, prediction and decision making in medicine, epidemiology, biology, economics, physics and social sciences. The first two methods apply conditional independence tests for caus...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Li, Jiuyong (Autor), Liu, Lin (Autor), Le, Thuc Duy (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Electrical and Computer Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-14433-7
003 DE-He213
005 20220118032509.0
007 cr nn 008mamaa
008 150302s2015 sz | s |||| 0|eng d
020 |a 9783319144337  |9 978-3-319-14433-7 
024 7 |a 10.1007/978-3-319-14433-7  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Li, Jiuyong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Practical Approaches to Causal Relationship Exploration  |h [electronic resource] /  |c by Jiuyong Li, Lin Liu, Thuc Duy Le. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 80 p. 55 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
505 0 |a Introduction -- Local causal discovery with a simple PC algorithm -- A local causal discovery algorithm for high dimensional data -- Causal rule discovery with partial association test -- Causal rule discovery with cohort studies -- Experimental comparison and discussions. 
520 |a This brief presents four practical methods to effectively explore causal relationships, which are often used for explanation, prediction and decision making in medicine, epidemiology, biology, economics, physics and social sciences. The first two methods apply conditional independence tests for causal discovery. The last two methods employ association rule mining for efficient causal hypothesis generation, and a partial association test and retrospective cohort study for validating the hypotheses. All four methods are innovative and effective in identifying potential causal relationships around a given target, and each has its own strength and weakness. For each method, a software tool is provided along with examples demonstrating its use. Practical Approaches to Causal Relationship Exploration is designed for researchers and practitioners working in the areas of artificial intelligence, machine learning, data mining, and biomedical research. The material also benefits advanced students interested in causal relationship discovery. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Liu, Lin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Le, Thuc Duy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319144344 
776 0 8 |i Printed edition:  |z 9783319144320 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-14433-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)