Numerical Methods for Nonlinear Partial Differential Equations
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Edición: | 1st ed. 2015. |
Colección: | Springer Series in Computational Mathematics,
47 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1. Introduction
- Part I: Analytical and Numerical Foundations
- 2. Analytical Background
- 3. FEM for Linear Problems
- 4. Concepts for Discretized Problems
- Part II: Approximation of Classical Formulations
- 5. The Obstacle Problem
- 6. The Allen-Cahn Equation
- 7. Harmonic Maps
- 8. Bending Problems
- Part III: Methods for Extended Formulations
- 9. Nonconvexity and Microstructure
- 10. Free Discontinuities
- 11. Elastoplasticity
- Auxiliary Routines
- Frequently Used Notation
- Index.