Loading…

Numerical Methods for Nonlinear Partial Differential Equations

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Author: Bartels, Sören (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:Inglés
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Springer Series in Computational Mathematics, 47
Subjects:
Online Access:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-13797-1
003 DE-He213
005 20220203104916.0
007 cr nn 008mamaa
008 150119s2015 sz | s |||| 0|eng d
020 |a 9783319137971  |9 978-3-319-13797-1 
024 7 |a 10.1007/978-3-319-13797-1  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Bartels, Sören.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Methods for Nonlinear Partial Differential Equations  |h [electronic resource] /  |c by Sören Bartels. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 393 p. 122 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 2198-3712 ;  |v 47 
505 0 |a 1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index. 
520 |a The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations. 
650 0 |a Numerical analysis. 
650 0 |a Differential equations. 
650 0 |a Algorithms. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Differential Equations. 
650 2 4 |a Algorithms. 
650 2 4 |a Calculus of Variations and Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319137988 
776 0 8 |i Printed edition:  |z 9783319137964 
776 0 8 |i Printed edition:  |z 9783319356808 
830 0 |a Springer Series in Computational Mathematics,  |x 2198-3712 ;  |v 47 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-13797-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)