Cargando…

Set Operads in Combinatorics and Computer Science

This monograph has two main objectives. The first one is to give a self-contained exposition of the relevant facts about set operads, in the context of combinatorial species and its operations. This approach has various advantages: one of them is that the definition of combinatorial operations on sp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Méndez, Miguel A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-11713-3
003 DE-He213
005 20220112151731.0
007 cr nn 008mamaa
008 150108s2015 sz | s |||| 0|eng d
020 |a 9783319117133  |9 978-3-319-11713-3 
024 7 |a 10.1007/978-3-319-11713-3  |2 doi 
050 4 |a QA351 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.5  |2 23 
100 1 |a Méndez, Miguel A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Set Operads in Combinatorics and Computer Science  |h [electronic resource] /  |c by Miguel A. Méndez. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 129 p. 62 illus., 43 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 ;  |v 0 
505 0 |a Introduction -- Preliminaries on Species and Set Operads -- Operations on Species and Set Operads -- Decomposition Theory -- Rigid Operads -- Posets from Cancellative Operads and Koszul Duality -- Appendix. 
520 |a This monograph has two main objectives. The first one is to give a self-contained exposition of the relevant facts about set operads, in the context of combinatorial species and its operations. This approach has various advantages: one of them is that the definition of combinatorial operations on species, product, sum, substitution and derivative, are simple and natural. They were designed as the set theoretical counterparts of the homonym operations on exponential generating functions, giving an immediate insight on the combinatorial meaning of them. The second objective is more ambitious. Before formulating it, authors present a brief historic account on the sources of decomposition theory. For more than forty years decompositions of discrete structures have been studied in different branches of discrete mathematics: combinatorial optimization, network and graph theory, switching design or boolean functions, simple multi-person games and clutters, etc. 
650 0 |a Special functions. 
650 0 |a System theory. 
650 0 |a Operator theory. 
650 1 4 |a Special Functions. 
650 2 4 |a Complex Systems. 
650 2 4 |a Operator Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319117140 
776 0 8 |i Printed edition:  |z 9783319117126 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 ;  |v 0 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-11713-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)