Cargando…

An Introduction to Riemannian Geometry With Applications to Mechanics and Relativity /

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Godinho, Leonor (Autor), Natário, José (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-08666-8
003 DE-He213
005 20220118085530.0
007 cr nn 008mamaa
008 140726s2014 sz | s |||| 0|eng d
020 |a 9783319086668  |9 978-3-319-08666-8 
024 7 |a 10.1007/978-3-319-08666-8  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Godinho, Leonor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Riemannian Geometry  |h [electronic resource] :  |b With Applications to Mechanics and Relativity /  |c by Leonor Godinho, José Natário. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 467 p. 60 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Differentiable Manifolds -- Differential Forms -- Riemannian Manifolds -- Curvature -- Geometric Mechanics -- Relativity. 
520 |a Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study. 
650 0 |a Geometry, Differential. 
650 0 |a Mathematical physics. 
650 0 |a Mechanics. 
650 0 |a Gravitation. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Classical Mechanics. 
650 2 4 |a Classical and Quantum Gravity. 
700 1 |a Natário, José.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319086675 
776 0 8 |i Printed edition:  |z 9783319086651 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-08666-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)