Cargando…

Fusion in Computer Vision Understanding Complex Visual Content /

Visual content understanding is a complex and important challenge for applications in automatic multimedia information indexing, medicine, robotics, and surveillance. Yet the performance of such systems can be improved by the fusion of individual modalities/techniques for content representation and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Ionescu, Bogdan (Editor ), Benois-Pineau, Jenny (Editor ), Piatrik, Tomas (Editor ), Quénot, Georges (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-05696-8
003 DE-He213
005 20220119035235.0
007 cr nn 008mamaa
008 140325s2014 sz | s |||| 0|eng d
020 |a 9783319056968  |9 978-3-319-05696-8 
024 7 |a 10.1007/978-3-319-05696-8  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Fusion in Computer Vision  |h [electronic resource] :  |b Understanding Complex Visual Content /  |c edited by Bogdan Ionescu, Jenny Benois-Pineau, Tomas Piatrik, Georges Quénot. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 272 p. 74 illus., 65 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a A Selective Weighted Late Fusion for Visual Concept Recognition -- Bag-of-Words Image Representation: Key Ideas and Further Insight -- Hierarchical Late Fusion for Concept Detection in Videos -- Fusion of Multiple Visual Cues for Object Recognition in Video -- Evaluating Multimedia Features and Fusion for Example-Based Event Detection -- Rotation-Based Ensemble Classifiers for High Dimensional Data -- Multimodal Fusion in Surveillance Applications -- Multimodal Violence Detection in Hollywood Movies: State-of-the-Art and Benchmarking -- Fusion Techniques in Biomedical Information Retrieval -- Using Crowdsourcing to Capture Complexity in Human Interpretations of Multimedia Content. 
520 |a Visual content understanding is a complex and important challenge for applications in automatic multimedia information indexing, medicine, robotics, and surveillance. Yet the performance of such systems can be improved by the fusion of individual modalities/techniques for content representation and machine learning. This comprehensive text/reference presents a thorough overview of Fusion in Computer Vision, from an interdisciplinary and multi-application viewpoint. Presenting contributions from an international selection of experts, the work describes numerous successful approaches, evaluated in the context of international benchmarks that model realistic use cases at significant scales. Topics and features: Examines late fusion approaches for concept recognition in images and videos, including the bag-of-words model Describes the interpretation of visual content by incorporating models of the human visual system with content understanding methods Investigates the fusion of multi-modal features of different semantic levels, as well as results of semantic concept detections, for example-based event recognition in video Proposes rotation-based ensemble classifiers for high-dimensional data, which encourage both individual accuracy and diversity within the ensemble Reviews application-focused strategies of fusion in video surveillance, biomedical information retrieval, and content detection in movies Discusses the modeling of mechanisms of human interpretation of complex visual content This authoritative collection is essential reading for researchers and students interested in the domain of information fusion for complex visual content understanding, and related fields. 
650 0 |a Computer vision. 
650 0 |a Multimedia systems. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Computer Vision. 
650 2 4 |a Multimedia Information Systems. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Ionescu, Bogdan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Benois-Pineau, Jenny.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Piatrik, Tomas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Quénot, Georges.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319056975 
776 0 8 |i Printed edition:  |z 9783319056951 
776 0 8 |i Printed edition:  |z 9783319347745 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-05696-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)