Brownian Motion and its Applications to Mathematical Analysis École d'Été de Probabilités de Saint-Flour XLIII - 2013 /
These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, su...
Call Number: | Libro Electrónico |
---|---|
Main Author: | |
Corporate Author: | |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Edition: | 1st ed. 2014. |
Series: | École d'Été de Probabilités de Saint-Flour ;
2106 |
Subjects: | |
Online Access: | Texto Completo |
Table of Contents:
- 1. Brownian motion
- 2. Probabilistic proofs of classical theorems
- 3. Overview of the "hot spots" problem
- 4. Neumann eigenfunctions and eigenvalues
- 5. Synchronous and mirror couplings
- 6. Parabolic boundary Harnack principle
- 7. Scaling coupling
- 8. Nodal lines
- 9. Neumann heat kernel monotonicity
- 10. Reflected Brownian motion in time dependent domains.