Cargando…

Mathematics of Aperiodic Order

What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the - later Nobel prize-winning - discovery of quas...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Kellendonk, Johannes (Editor ), Lenz, Daniel (Editor ), Savinien, Jean (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2015.
Edición:1st ed. 2015.
Colección:Progress in Mathematics, 309
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0903-0
003 DE-He213
005 20220114112950.0
007 cr nn 008mamaa
008 150605s2015 sz | s |||| 0|eng d
020 |a 9783034809030  |9 978-3-0348-0903-0 
024 7 |a 10.1007/978-3-0348-0903-0  |2 doi 
050 4 |a QA639.5-640.7 
050 4 |a QA640.7-640.77 
072 7 |a PBM  |2 bicssc 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT012020  |2 bisacsh 
072 7 |a PBM  |2 thema 
072 7 |a PBD  |2 thema 
082 0 4 |a 516  |2 23 
245 1 0 |a Mathematics of Aperiodic Order  |h [electronic resource] /  |c edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien. 
250 |a 1st ed. 2015. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XII, 428 p. 59 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 309 
505 0 |a Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrödinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program. 
520 |a What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the - later Nobel prize-winning - discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 0 |a Dynamical systems. 
650 0 |a Operator theory. 
650 0 |a Number theory. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Convex and Discrete Geometry. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Operator Theory. 
650 2 4 |a Number Theory. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Kellendonk, Johannes.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lenz, Daniel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Savinien, Jean.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034809047 
776 0 8 |i Printed edition:  |z 9783034809023 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 309 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0903-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)