Cargando…

Global Existence and Uniqueness of Nonlinear Evolutionary Fluid Equations

This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. Thes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Qin, Yuming (Autor), Liu, Xin (Autor), Wang, Taige (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2015.
Edición:1st ed. 2015.
Colección:Frontiers in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0594-0
003 DE-He213
005 20220114011849.0
007 cr nn 008mamaa
008 150211s2015 sz | s |||| 0|eng d
020 |a 9783034805940  |9 978-3-0348-0594-0 
024 7 |a 10.1007/978-3-0348-0594-0  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Qin, Yuming.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Global Existence and Uniqueness of Nonlinear Evolutionary Fluid Equations  |h [electronic resource] /  |c by Yuming Qin, Xin Liu, Taige Wang. 
250 |a 1st ed. 2015. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XI, 211 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8054 
505 0 |a Preface -- 1 Global Existence and Asymptotic Behavior for the Cauchy Problem of the 1D Magnetohydrodynamic Fluid System -- 2 Global Existence and Exponential Stability for a 1D Compressible and Radiative MHD Flow -- 3 Global Smooth Solutions for 1D Thermally Radiative Magnetohydrodynamics with Selfgravitation.- 4 Global Smooth Solutions to A 1D Self-gravitating Viscous Radiative and Reactive Gas -- 5 The Cauchy Problem for A 1D Compressible Viscous Micropolar Fluid Model -- 6 Global Existence and Exponential Stability for A 1D Compressible Viscous Micropolar Fluid Model -- 7 Global Existence and Exponential Stability of Solutions to the 1D Full non-Newtonian Fluids -- 8 Exponential Stability of Spherically Symmetric Solutions to Nonlinear Non-autonomous Compressible Navier-Stokes Equations -- Bibliography -- Index.  . 
520 |a This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. These types of partial differential equations arise in many fields of mathematics, but also in other branches of science such as physics and fluid dynamics. This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering. 
650 0 |a Mathematical physics. 
650 0 |a Differential equations. 
650 0 |a Continuum mechanics. 
650 1 4 |a Mathematical Physics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Continuum Mechanics. 
700 1 |a Liu, Xin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wang, Taige.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034805957 
776 0 8 |i Printed edition:  |z 9783034805933 
830 0 |a Frontiers in Mathematics,  |x 1660-8054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0594-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)