Chargement en cours…

Functional Analysis in Asymmetric Normed Spaces

An asymmetric norm is a positive definite sublinear functional p on a real vector space X. The topology generated by the asymmetric norm p is translation invariant so that the addition is continuous, but the asymmetry of the norm implies that the multiplication by scalars is continuous only when res...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Cobzas, Stefan (Auteur)
Collectivité auteur: SpringerLink (Online service)
Format: Électronique eBook
Langue:Inglés
Publié: Basel : Springer Basel : Imprint: Birkhäuser, 2013.
Édition:1st ed. 2013.
Collection:Frontiers in Mathematics,
Sujets:
Accès en ligne:Texto Completo
Table des matières:
  • Introduction.- 1. Quasi-metric and Quasi-uniform Spaces. 1.1. Topological properties of quasi-metric and quasi-uniform spaces
  • 1.2. Completeness and compactness in quasi-metric and quasi-uniform spaces.- 2. Asymmetric Functional Analysis
  • 2.1. Continuous linear operators between asymmetric normed spaces
  • 2.2. Hahn-Banach type theorems and the separation of convex sets
  • 2.3. The fundamental principles
  • 2.4. Weak topologies
  • 2.5. Applications to best approximation
  • 2.6. Spaces of semi-Lipschitz functions
  • Bibliography
  • Index.