Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals
In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Caldero...
Cote: | Libro Electrónico |
---|---|
Auteurs principaux: | , |
Collectivité auteur: | |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
Basel :
Springer Basel : Imprint: Birkhäuser,
2013.
|
Édition: | 1st ed. 2013. |
Collection: | Monografie Matematyczne,
74 |
Sujets: | |
Accès en ligne: | Texto Completo |
Table des matières:
- Preface
- Introduction
- Definitions, notation, and some standard facts
- Part 1. Background
- Chapter 1. Classical Calderón-Zygmund decomposition and real interpolation
- Chapter 2. Singular integrals
- Chapter 3. Classical covering theorems
- Chapter 4. Spaces of smooth functions and operators on them
- Chapter 5. Some topics in interpolation
- Chapter 6. Regularization for Banach spaces
- Chapter 7. Stability for analytic Hardy spaces
- Part 2. Advanced theory
- Chapter 8. Controlled coverings
- Chapter 9. Construction of near-minimizers
- Chapter 10. Stability of near-minimizers
- Chapter 11. The omitted case of a limit exponent
- Chapter A. Appendix. Near-minimizers for Brudnyi and Triebel-Lizorkin spaces
- Notes and remarks
- Bibliography
- Index.