Cargando…

Classical Fourier Analysis

The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood-Paley theory. The primary readershi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grafakos, Loukas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:3rd ed. 2014.
Colección:Graduate Texts in Mathematics, 249
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-1194-3
003 DE-He213
005 20220114013458.0
007 cr nn 008mamaa
008 141117s2014 xxu| s |||| 0|eng d
020 |a 9781493911943  |9 978-1-4939-1194-3 
024 7 |a 10.1007/978-1-4939-1194-3  |2 doi 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.2433  |2 23 
100 1 |a Grafakos, Loukas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Classical Fourier Analysis  |h [electronic resource] /  |c by Loukas Grafakos. 
250 |a 3rd ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 638 p. 14 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 249 
505 0 |a Preface -- 1. Lp Spaces and Interpolation -- 2. Maximal Functions, Fourier Transform, and Distributions -- 3. Fourier Series -- 4. Topics on Fourier Series -- 5. Singular Integrals of Convolution Type -- 6. Littlewood-Paley Theory and Multipliers -- 7. Weighted Inequalities -- A. Gamma and Beta Functions -- B. Bessel Functions -- C. Rademacher Functions -- D. Spherical Coordinates -- E. Some Trigonometric Identities and Inequalities -- F. Summation by Parts -- G. Basic Functional Analysis -- H. The Minimax Lemma -- I. Taylor's and Mean Value Theorem in Several Variables -- J. The Whitney Decomposition of Open Sets in Rn -- Glossary -- References -- Index. 
520 |a The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood-Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on "Weighted Inequalities," which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and improved references. Reviews from the Second Edition: "The books cover a large amount of mathematics. They are certainly a valuable and useful addition to the existing literature and can serve as textbooks or as reference books. Students will especially appreciate the extensive collection of exercises." -Andreas Seager, Mathematical Reviews "This book is very interesting and useful. It is not only a good textbook, but also an indispensable and valuable reference for researchers who are working on analysis and partial differential equations. The readers will certainly benefit a lot from the detailed proofs and the numerous exercises." -Yang Dachun, zbMATH. 
650 0 |a Fourier analysis. 
650 0 |a Harmonic analysis. 
650 0 |a Functional analysis. 
650 1 4 |a Fourier Analysis. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493911936 
776 0 8 |i Printed edition:  |z 9781493911950 
776 0 8 |i Printed edition:  |z 9781493939169 
830 0 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 249 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-1194-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)