Cargando…

Quantum Theory for Mathematicians

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hall, Brian C. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Graduate Texts in Mathematics, 267
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-7116-5
003 DE-He213
005 20220114011709.0
007 cr nn 008mamaa
008 130619s2013 xxu| s |||| 0|eng d
020 |a 9781461471165  |9 978-1-4614-7116-5 
024 7 |a 10.1007/978-1-4614-7116-5  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Hall, Brian C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantum Theory for Mathematicians  |h [electronic resource] /  |c by Brian C. Hall. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 554 p. 30 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 267 
505 0 |a 1 The Experimental Origins of Quantum Mechanics -- 2 A First Approach to Classical Mechanics -- 3 A First Approach to Quantum Mechanics -- 4 The Free Schrödinger Equation -- 5 A Particle in a Square Well -- 6 Perspectives on the Spectral Theorem -- 7 The Spectral Theorem for Bounded Self-Adjoint Operators: Statements -- 8 The Spectral Theorem for Bounded Sef-Adjoint Operators: Proofs -- 9 Unbounded Self-Adjoint Operators -- 10 The Spectral Theorem for Unbounded Self-Adjoint Operators -- 11 The Harmonic Oscillator -- 12 The Uncertainty Principle -- 13 Quantization Schemes for Euclidean Space -- 14 The Stone-von Neumann Theorem -- 15 The WKB Approximation -- 16 Lie Groups, Lie Algebras, and Representations -- 17 Angular Momentum and Spin -- 18 Radial Potentials and the Hydrogen Atom -- 19 Systems and Subsystems, Multiple Particles -- V Advanced Topics in Classical and Quantum Mechanics -- 20 The Path-Integral Formulation of Quantum Mechanics -- 21 Hamiltonian Mechanics on Manifolds -- 22 Geometric Quantization on Euclidean Space -- 23 Geometric Quantization on Manifolds -- A Review of Basic Material -- References. - Index. 
520 |a Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone-von Neumann Theorem; the Wentzel-Kramers-Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces.  The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 0 |a Functional analysis. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Mathematical Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781489993625 
776 0 8 |i Printed edition:  |z 9781461471158 
776 0 8 |i Printed edition:  |z 9781461471172 
830 0 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 267 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-7116-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)