Loading…

3D Surface Reconstruction Multi-Scale Hierarchical Approaches /

3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Authors: Bellocchio, Francesco (Author), Borghese, N. Alberto (Author), Ferrari, Stefano (Author), Piuri, Vincenzo (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:Inglés
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Subjects:
Online Access:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-5632-2
003 DE-He213
005 20230822073317.0
007 cr nn 008mamaa
008 121026s2013 xxu| s |||| 0|eng d
020 |a 9781461456322  |9 978-1-4614-5632-2 
024 7 |a 10.1007/978-1-4614-5632-2  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
100 1 |a Bellocchio, Francesco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a 3D Surface Reconstruction  |h [electronic resource] :  |b Multi-Scale Hierarchical Approaches /  |c by Francesco Bellocchio, N. Alberto Borghese, Stefano Ferrari, Vincenzo Piuri. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a VI, 162 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Scanner systems -- Reconstruction -- Surface fitting as a regression problem -- Hierarchical Radial Basis Functions Networks -- Hierarchical Support Vector Regression -- Conclusion. 
520 |a 3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required. 3D Surface Reconstruction: Multi-Scale Hierarchical Approaches is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields. 
650 0 |a Computer vision. 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 0 |a Computer networks . 
650 0 |a Image processing  |x Digital techniques. 
650 1 4 |a Computer Vision. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Borghese, N. Alberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ferrari, Stefano.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Piuri, Vincenzo.  |e author.  |0 (orcid)0000-0003-3178-8198  |1 https://orcid.org/0000-0003-3178-8198  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461456339 
776 0 8 |i Printed edition:  |z 9781493901173 
776 0 8 |i Printed edition:  |z 9781461456315 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-5632-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)