Cargando…

Restricted Kalman Filtering Theory, Methods, and Application /

In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pizzinga, Adrian (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Statistics, 12
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-4738-2
003 DE-He213
005 20220115203608.0
007 cr nn 008mamaa
008 120723s2012 xxu| s |||| 0|eng d
020 |a 9781461447382  |9 978-1-4614-4738-2 
024 7 |a 10.1007/978-1-4614-4738-2  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Pizzinga, Adrian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Restricted Kalman Filtering  |h [electronic resource] :  |b Theory, Methods, and Application /  |c by Adrian Pizzinga. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a X, 62 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-5458 ;  |v 12 
505 0 |a Introduction -- Linear state space models and the Kalman filtering: a briefing -- Restricted Kalman filtering: theoretical issues -- Restricted Kalman filtering: methodological issues -- Applications -- Further Extensions. 
520 |a In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone.  This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where the proposed methods are illustrated and evaluated. The Brief has a short chapter on linear state space models and the Kalman filter, aiming to make the book self-contained and to give a quick reference to the reader (notation and terminology). The prerequisites would be a contact with time series analysis in the level of Hamilton (1994) or Brockwell & Davis (2002) and also with linear state models and the Kalman filter - each of these books has a chapter entirely dedicated to the subject. The book is intended for graduate students, researchers and practitioners in statistics (specifically: time series analysis and econometrics). 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461447375 
776 0 8 |i Printed edition:  |z 9781461447399 
830 0 |a SpringerBriefs in Statistics,  |x 2191-5458 ;  |v 12 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-4738-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)