Linear Mixed-Effects Models Using R A Step-by-Step Approach /
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wid...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Gałecki, Andrzej (Autor), Burzykowski, Tomasz (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Edición: | 1st ed. 2013. |
Colección: | Springer Texts in Statistics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Vector Generalized Linear and Additive Models With an Implementation in R /
por: Yee, Thomas W.
Publicado: (2015) -
Introduction to Probability Simulation and Gibbs Sampling with R
por: Suess, Eric A., et al.
Publicado: (2010) -
Examples in Parametric Inference with R
por: Dixit, Ulhas Jayram
Publicado: (2016) -
Regression Modeling Strategies With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis /
por: Harrell , Jr., Frank E.
Publicado: (2015) -
Analyzing Compositional Data with R
por: van den Boogaart, K. Gerald, et al.
Publicado: (2013)