Fractal-Based Methods in Analysis
The idea of modeling the behavior of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional...
Cote: | Libro Electrónico |
---|---|
Auteurs principaux: | Kunze, Herb (Auteur), La Torre, Davide (Auteur), Mendivil, Franklin (Auteur), Vrscay, Edward R. (Auteur) |
Collectivité auteur: | SpringerLink (Online service) |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
New York, NY :
Springer US : Imprint: Springer,
2012.
|
Édition: | 1st ed. 2012. |
Sujets: | |
Accès en ligne: | Texto Completo |
Documents similaires
-
Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles
par: Han, Maoan, et autres
Publié: (2012) -
Nonlinear Oscillations of Hamiltonian PDEs
par: Berti, Massimiliano
Publié: (2007) -
Construction of Global Lyapunov Functions Using Radial Basis Functions
par: Giesl, Peter
Publié: (2007) -
Averaging Methods in Nonlinear Dynamical Systems
par: Sanders, Jan A., et autres
Publié: (2007) -
Dynamics of Quasi-Stable Dissipative Systems
par: Chueshov, Igor
Publié: (2015)