Cargando…

Neural Networks and Statistical Learning

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Du, Ke-Lin (Autor), Swamy, M. N. S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-5571-3
003 DE-He213
005 20220120155823.0
007 cr nn 008mamaa
008 131206s2014 xxk| s |||| 0|eng d
020 |a 9781447155713  |9 978-1-4471-5571-3 
024 7 |a 10.1007/978-1-4471-5571-3  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Du, Ke-Lin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Neural Networks and Statistical Learning  |h [electronic resource] /  |c by Ke-Lin Du, M. N. S. Swamy. 
250 |a 1st ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XXVII, 824 p. 166 illus., 68 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Fundamentals of Machine Learning -- Perceptrons -- Multilayer perceptrons: architecture and error backpropagation -- Multilayer perceptrons: other learing techniques -- Hopfield networks, simulated annealing and chaotic neural networks -- Associative memory networks -- Clustering I: Basic clustering models and algorithms -- Clustering II: topics in clustering -- Radial basis function networks -- Recurrent neural networks -- Principal component analysis -- Nonnegative matrix factorization and compressed sensing -- Independent component analysis -- Discriminant analysis -- Support vector machines -- Other kernel methods -- Reinforcement learning -- Probabilistic and Bayesian networks -- Combining multiple learners: data fusion and emsemble learning -- Introduction of fuzzy sets and logic -- Neurofuzzy systems -- Neural circuits -- Pattern recognition for biometrics and bioinformatics -- Data mining. 
520 |a Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining. 
650 0 |a Computational intelligence. 
650 0 |a Neural networks (Computer science) . 
650 0 |a Data mining. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Swamy, M. N. S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447155720 
776 0 8 |i Printed edition:  |z 9781447155706 
776 0 8 |i Printed edition:  |z 9781447170471 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-5571-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)