Cargando…

Nonlinear Oscillations of Hamiltonian PDEs

Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berti, Massimiliano (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2007.
Edición:1st ed. 2007.
Colección:Progress in Nonlinear Differential Equations and Their Applications, 74
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4681-3
003 DE-He213
005 20220113022345.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817646813  |9 978-0-8176-4681-3 
024 7 |a 10.1007/978-0-8176-4681-3  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Berti, Massimiliano.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonlinear Oscillations of Hamiltonian PDEs  |h [electronic resource] /  |c by Massimiliano Berti. 
250 |a 1st ed. 2007. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2007. 
300 |a XIV, 180 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 2374-0280 ;  |v 74 
505 0 |a Finite Dimension -- Infinite Dimension -- A Tutorial in Nash-Moser Theory -- Application to the Nonlinear Wave Equation -- Forced Vibrations. 
520 |a Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. After introducing the reader to classical finite-dimensional dynamical system theory, including the Weinstein-Moser and Fadell-Rabinowitz resonant center theorems, the author develops the analogous theory for completely resonant nonlinear wave equations. Within this theory, both problems of small divisors and infinite bifurcation phenomena occur, requiring the use of Nash-Moser theory as well as minimax variational methods. These techniques are presented in a self-contained manner together with other basic notions of Hamiltonian PDEs and number theory. This text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in nonlinear variational techniques as well in small divisors problems applied to Hamiltonian PDEs will find inspiration in the book. 
650 0 |a Differential equations. 
650 0 |a Dynamical systems. 
650 0 |a Approximation theory. 
650 0 |a Number theory. 
650 0 |a Mathematics. 
650 0 |a Mathematical physics. 
650 1 4 |a Differential Equations. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Number Theory. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817671471 
776 0 8 |i Printed edition:  |z 9780817646806 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 2374-0280 ;  |v 74 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4681-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)