Cargando…

Homogenization of Partial Differential Equations

Homogenization is a method for modeling processes in microinhomogeneous media, which are encountered in radiophysics, filtration theory, rheology, elasticity theory, and other domains of mechanics, physics, and technology. These processes are described by PDEs with rapidly oscillating coefficients o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Marchenko, Vladimir A. (Autor), Khruslov, Evgueni Ya (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2006.
Edición:1st ed. 2006.
Colección:Progress in Mathematical Physics, 46
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4468-0
003 DE-He213
005 20220120065546.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644680  |9 978-0-8176-4468-0 
024 7 |a 10.1007/978-0-8176-4468-0  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Marchenko, Vladimir A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Homogenization of Partial Differential Equations  |h [electronic resource] /  |c by Vladimir A. Marchenko, Evgueni Ya. Khruslov. 
250 |a 1st ed. 2006. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2006. 
300 |a XIV, 402 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics,  |x 2197-1846 ;  |v 46 
505 0 |a The Dirichlet Boundary Value Problem in Strongly Perforated Domains with Fine-Grained Boundary -- The Dirichlet Boundary Value Problem in Strongly Perforated Domains with Complex Boundary -- Strongly Connected Domains -- The Neumann Boundary Value Problems in Strongly Perforated Domains -- Nonstationary Problems and Spectral Problems -- Differential Equations with Rapidly Oscillating Coefficients -- Homogenized Conjugation Conditions. 
520 |a Homogenization is a method for modeling processes in microinhomogeneous media, which are encountered in radiophysics, filtration theory, rheology, elasticity theory, and other domains of mechanics, physics, and technology. These processes are described by PDEs with rapidly oscillating coefficients or boundary value problems in domains with complex microstructure. From the technical point of view, given the complexity of these processes, the best techniques to solve a wide variety of problems involve constructing appropriate macroscopic (homogenized) models. The present monograph is a comprehensive study of homogenized problems, based on the asymptotic analysis of boundary value problems as the characteristic scales of the microstructure decrease to zero. The work focuses on the construction of nonstandard models: non-local models, multicomponent models, and models with memory. Along with complete proofs of all main results, numerous examples of typical structures of microinhomogeneous media with their corresponding homogenized models are provided. Graduate students, applied mathematicians, physicists, and engineers will benefit from this monograph, which may be used in the classroom or as a comprehensive reference text. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Mathematics. 
650 0 |a System theory. 
650 0 |a Functional analysis. 
650 0 |a Mathematical optimization. 
650 1 4 |a Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Complex Systems. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Optimization. 
700 1 |a Khruslov, Evgueni Ya.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817671808 
776 0 8 |i Printed edition:  |z 9780817643515 
830 0 |a Progress in Mathematical Physics,  |x 2197-1846 ;  |v 46 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4468-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)