Loading…

Number Fields and Function Fields - Two Parallel Worlds

Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject. As a deeper understanding of this analogy could have tremendous consequences, the search...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Corporate Author: SpringerLink (Online service)
Other Authors: van der Geer, Gerard B. M. (Editor), Moonen, BJJ (Editor), Schoof, René (Editor)
Format: Electronic eBook
Language:Inglés
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edition:1st ed. 2005.
Series:Progress in Mathematics, 239
Subjects:
Online Access:Texto Completo
Table of Contents:
  • Arithmetic over Function Fields: A Cohomological Approach
  • Algebraic Stacks Whose Number of Points over Finite Fields is a Polynomial
  • On a Problem of Miyaoka
  • Monodromy Groups Associated to Non-Isotrivial Drinfeld Modules in Generic Characteristic
  • Irreducible Values of Polynomials: A Non-Analogy
  • Schemes over
  • Line Bundles and p-Adic Characters
  • Arithmetic Eisenstein Classes on the Siegel Space: Some Computations
  • Uniformizing the Stacks of Abelian Sheaves
  • Faltings' Delta-Invariant of a Hyperelliptic Riemann Surface
  • A Hirzebruch Proportionality Principle in Arakelov Geometry
  • On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields
  • A Note on Absolute Derivations and Zeta Functions
  • On the Order of Certain Characteristic Classes of the Hodge Bundle of Semi-Abelian Schemes
  • A Note on the Manin-Mumford Conjecture.