A First Course in Bayesian Statistical Methods
This book provides a compact self-contained introduction to the theory and application of Bayesian statistical methods. The book is accessible to readers having a basic familiarity with probability, yet allows more advanced readers to quickly grasp the principles underlying Bayesian theory and metho...
Cote: | Libro Electrónico |
---|---|
Auteur principal: | |
Collectivité auteur: | |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
New York, NY :
Springer New York : Imprint: Springer,
2009.
|
Édition: | 1st ed. 2009. |
Collection: | Springer Texts in Statistics,
|
Sujets: | |
Accès en ligne: | Texto Completo |
Table des matières:
- and examples
- Belief, probability and exchangeability
- One-parameter models
- Monte Carlo approximation
- The normal model
- Posterior approximation with the Gibbs sampler
- The multivariate normal model
- Group comparisons and hierarchical modeling
- Linear regression
- Nonconjugate priors and Metropolis-Hastings algorithms
- Linear and generalized linear mixed effects models
- Latent variable methods for ordinal data.