Cargando…

Incorporating Knowledge Sources into Statistical Speech Recognition

Incorporating Knowledge Sources into Statistical Speech Recognition offers solutions for enhancing the robustness of a statistical automatic speech recognition (ASR) system by incorporating various additional knowledge sources while keeping the training and recognition effort feasible. The authors p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sakti, Sakriani (Autor), Markov, Konstantin (Autor), Nakamura, Satoshi (Autor), Minker, Wolfgang (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Electrical Engineering, 42
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-85830-2
003 DE-He213
005 20220113161512.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387858302  |9 978-0-387-85830-2 
024 7 |a 10.1007/978-0-387-85830-2  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Sakti, Sakriani.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Incorporating Knowledge Sources into Statistical Speech Recognition  |h [electronic resource] /  |c by Sakriani Sakti, Konstantin Markov, Satoshi Nakamura, Wolfgang Minker. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2009. 
300 |a XXIV, 196 p. 100 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Electrical Engineering,  |x 1876-1119 ;  |v 42 
505 0 |a and Book Overview -- Statistical Speech Recognition -- Graphical Framework to Incorporate Knowledge Sources -- Speech Recognition Using GFIKS -- Conclusions and Future Directions. 
520 |a Incorporating Knowledge Sources into Statistical Speech Recognition offers solutions for enhancing the robustness of a statistical automatic speech recognition (ASR) system by incorporating various additional knowledge sources while keeping the training and recognition effort feasible. The authors provide an efficient general framework for incorporating knowledge sources into state-of-the-art statistical ASR systems. This framework, which is called GFIKS (graphical framework to incorporate additional knowledge sources), was designed by utilizing the concept of the Bayesian network (BN) framework. This framework allows probabilistic relationships among different information sources to be learned, various kinds of knowledge sources to be incorporated, and a probabilistic function of the model to be formulated. Incorporating Knowledge Sources into Statistical Speech Recognition demonstrates how the statistical speech recognition system may incorporate additional information sources by utilizing GFIKS at different levels of ASR. The incorporation of various knowledge sources, including background noises, accent, gender and wide phonetic knowledge information, in modeling is discussed theoretically and analyzed experimentally. 
650 0 |a Signal processing. 
650 0 |a Acoustics. 
650 0 |a Telecommunication. 
650 0 |a Computer networks . 
650 0 |a Electrical engineering. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Acoustics. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Electrical and Electronic Engineering. 
700 1 |a Markov, Konstantin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Nakamura, Satoshi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Minker, Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441946768 
776 0 8 |i Printed edition:  |z 9780387858821 
776 0 8 |i Printed edition:  |z 9780387858296 
830 0 |a Lecture Notes in Electrical Engineering,  |x 1876-1119 ;  |v 42 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-85830-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)