Chargement en cours…

Recommender Systems Handbook

The explosive growth of e-commerce and online environments has made the issue of information search and selection increasingly serious; users are overloaded by options to consider and they may not have the time or knowledge to personally evaluate these options. Recommender systems have proven to be...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Collectivité auteur: SpringerLink (Online service)
Autres auteurs: Ricci, Francesco (Éditeur intellectuel), Rokach, Lior (Éditeur intellectuel), Shapira, Bracha (Éditeur intellectuel), Kantor, Paul B. (Éditeur intellectuel)
Format: Électronique eBook
Langue:Inglés
Publié: New York, NY : Springer US : Imprint: Springer, 2011.
Édition:1st ed. 2011.
Sujets:
Accès en ligne:Texto Completo
Table des matières:
  • Introduction to Recommender Systems Handbook
  • Part I Basic Techniques
  • Data Mining Methods for Recommender Systems
  • Content-based Recommender Systems: State of the Art and Trends
  • A Comprehensive Survey of Neighborhood-based Recommendation Methods
  • Advances in Collaborative Filtering
  • Developing Constraint-based Recommenders
  • Context-Aware Recommender Systems
  • Part II Applications and Evaluation of RSs
  • Evaluating Recommendation Systems
  • A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment
  • How to Get the Recommender Out of the Lab?
  • Matching Recommendation Technologies and Domains
  • Recommender Systems in Technology Enhanced Learning
  • Part III Interacting with Recommender Systems
  • On the Evolution of Critiquing Recommenders
  • Creating More Credible and Persuasive Recommender Systems: The Influence of Source Characteristics on Recommender System Evaluations
  • Designing and Evaluating Explanations for Recommender Systems
  • Usability Guidelines for Product Recommenders Based on Example Critiquing Research
  • Map Based Visualization of Product Catalogs
  • Part IV Recommender Systems and Communities
  • Communities, Collaboration, and Recommender Systems in Personalized Web Search
  • Social Tagging Recommender Systems
  • Trust and Recommendations
  • Group Recommender Systems: Combining Individual Models
  • Aggregation of Preferences in Recommender Systems
  • Active Learning in Recommender Systems
  • Multi-Criteria Recommender Systems
  • Robust Collaborative Recommendation
  • Index.