Cargando…

Data Mining A Knowledge Discovery Approach /

This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribe the sequence in which data mining projects should be performed. Data Mining offers an authoritative treatment of all development phases from problem and data understanding through da...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cios, Krzysztof J. (Autor), Pedrycz, Witold (Autor), Swiniarski, Roman W. (Autor), Kurgan, Lukasz Andrzej (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-36795-8
003 DE-He213
005 20220113010917.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387367958  |9 978-0-387-36795-8 
024 7 |a 10.1007/978-0-387-36795-8  |2 doi 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.74  |2 23 
100 1 |a Cios, Krzysztof J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Mining  |h [electronic resource] :  |b A Knowledge Discovery Approach /  |c by Krzysztof J. Cios, Witold Pedrycz, Roman W. Swiniarski, Lukasz Andrzej Kurgan. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2007. 
300 |a XV, 606 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Data Mining and Knowledge Discovery Process -- The Knowledge Discovery Process -- Data Understanding -- Data -- Concepts of Learning, Classification, and Regression -- Knowledge Representation -- Data Preprocessing -- Databases, Data Warehouses, and OLAP -- Feature Extraction and Selection Methods -- Discretization Methods -- Data Mining: Methods for Constructing Data Models -- Unsupervised Learning: Clustering -- Unsupervised Learning: Association Rules -- Supervised Learning: Statistical Methods -- Supervised Learning: Decision Trees, Rule Algorithms, and Their Hybrids -- Supervised Learning: Neural Networks -- Text Mining -- Data Models Assessment -- Assessment of Data Models -- Data Security and Privacy Issues -- Data Security, Privacy and Data Mining. 
520 |a This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribe the sequence in which data mining projects should be performed. Data Mining offers an authoritative treatment of all development phases from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes this book from other texts in the area. It concentrates on data preparation, clustering and association rule learning (required for processing unsupervised data), decision trees, rule induction algorithms, neural networks, and many other data mining methods, focusing predominantly on those which have proven successful in data mining projects. Based upon the authors' previous successful book on data mining and knowledge discovery, this new volume has been extensively expanded, making it an effective instructional tool for advanced-level undergraduate and graduate courses. This book offers: A suite of exercises at the end of every chapter, designed to enhance the reader's understanding of the theory and proficiency with the tools presented Links to all-inclusive instructional presentations for each chapter to ensure easy use in classroom teaching Extensive appendices covering relevant mathematical material for convenient look-up Methods for addressing issues related to data privacy and security within the context of data mining, enabling the reader to balance potentially conflicting aims Summaries and bibliographical notes for each chapter, providing a broader perspective of the concepts and methods described Researchers, practitioners and students are certain to consider this volume an indispensable resource in successfully accomplishing the goals of their data mining projects. . 
650 0 |a Database management. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Statistics . 
650 0 |a Pattern recognition systems. 
650 1 4 |a Database Management. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Pedrycz, Witold.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Swiniarski, Roman W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kurgan, Lukasz Andrzej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441941206 
776 0 8 |i Printed edition:  |z 9780387513171 
776 0 8 |i Printed edition:  |z 9780387333335 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-36795-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)