Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal...
Cote: | Libro Electrónico |
---|---|
Auteurs principaux: | Lapidus, Michel L. (Auteur), van Frankenhuijsen, Machiel (Auteur) |
Collectivité auteur: | SpringerLink (Online service) |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
New York, NY :
Springer New York : Imprint: Springer,
2006.
|
Édition: | 1st ed. 2006. |
Collection: | Springer Monographs in Mathematics,
|
Sujets: | |
Accès en ligne: | Texto Completo |
Documents similaires
-
Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /
par: Lapidus, Michel L., et autres
Publié: (2013) -
Oscillations en biologie Analyse qualitative et modèles /
par: Françoise, Jean-Pierre
Publié: (2005) -
Local Lyapunov Exponents Sublimiting Growth Rates of Linear Random Differential Equations /
par: Siegert, Wolfgang
Publié: (2009) -
Dynamical Systems An Introduction /
par: Barreira, Luis, et autres
Publié: (2013) -
Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems Results and Examples /
par: Hanßmann, Heinz
Publié: (2007)