Cargando…

Modern Multidimensional Scaling Theory and Applications /

The book provides a comprehensive treatment of multidimensional scaling (MDS), a family of statistical techniques for analyzing the structure of (dis)similarity data. Such data are widespread, including, for example, intercorrelations of survey items, direct ratings on the similarity on choice objec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Borg, I. (Autor), Groenen, P. J. F. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2005.
Edición:2nd ed. 2005.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-28981-6
003 DE-He213
005 20220116035757.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387289816  |9 978-0-387-28981-6 
024 7 |a 10.1007/0-387-28981-X  |2 doi 
050 4 |a HA1-4737 
072 7 |a JHBC  |2 bicssc 
072 7 |a SOC027000  |2 bisacsh 
072 7 |a JHBC  |2 thema 
082 0 4 |a 300.727  |2 23 
100 1 |a Borg, I.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modern Multidimensional Scaling  |h [electronic resource] :  |b Theory and Applications /  |c by I. Borg, P. J. F. Groenen. 
250 |a 2nd ed. 2005. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XXII, 614 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Fundamentals of MDS -- The Four Purposes of Multidimensional Scaling -- Constructing MDS Representations -- MDS Models and Measures of Fit -- Three Applications of MDS -- MDS and Facet Theory -- How to Obtain Proximities -- MDS Models and Solving MDS Problems -- Matrix Algebra for MDS -- A Majorization Algorithm for Solving MDS -- Metric and Nonmetric MDS -- Confirmatory MDS -- MDS Fit Measures, Their Relations, and Some Algorithms -- Classical Scaling -- Special Solutions, Degeneracies, and Local Minima -- Unfolding -- Unfolding -- Avoiding Trivial Solutions in Unfolding -- Special Unfolding Models -- MDS Geometry as a Substantive Model -- MDS as a Psychological Model -- Scalar Products and Euclidean Distances -- Euclidean Embeddings -- MDS and Related Methods -- Procrustes Procedures -- Three-Way Procrustean Models -- Three-Way MDS Models -- Modeling Asymmetric Data -- Methods Related to MDS. 
520 |a The book provides a comprehensive treatment of multidimensional scaling (MDS), a family of statistical techniques for analyzing the structure of (dis)similarity data. Such data are widespread, including, for example, intercorrelations of survey items, direct ratings on the similarity on choice objects, or trade indices for a set of countries. MDS represents the data as distances among points in a geometric space of low dimensionality. This map can help to see patterns in the data that are not obvious from the data matrices. MDS is also used as a psychological model for judgments of similarity and preference. This book may be used as an introduction to MDS for students in psychology, sociology, and marketing. The prerequisite is an elementary background in statistics. The book is also well suited for a variety of advanced courses on MDS topics. All the mathematics required for more advanced topics is developed systematically. This second edition is not only a complete overhaul of its predecessor, but also adds some 140 pages of new material. Many chapters are revised or have sections reflecting new insights and developments in MDS. There are two new chapters, one on asymmetric models and the other on unfolding. There are also numerous exercises that help the reader to practice what he or she has learned, and to delve deeper into the models and its intricacies. These exercises make it easier to use this edition in a course. All data sets used in the book can be downloaded from the web. The appendix on computer programs has also been updated and enlarged to reflect the state of the art. Ingwer Borg is Scientific Director at the Center for Survey Methodology (ZUMA) in Mannheim, Germany, and Professor of Psychology at the University of Giessen, Germany. He has authored or edited 14 books and numerous articles on data analysis, survey research, theory construction, and various substantive topics of psychology. He also served as president of several professional organizations. Patrick Groenen is Professor in Statistics at the Econometric Institute of the Erasmus University Rotterdam, the Netherlands. Before, he was assistant professor at the Department of Data Theory at Leiden University in the Netherlands. He is an associate editor for three international journals. He has published on MDS, unfolding, optimization, multivariate analysis, and data analysis in various top journals. 
650 0 |a Social sciences-Statistical methods. 
650 0 |a Marketing. 
650 0 |a Pattern recognition systems. 
650 0 |a Mathematical statistics-Data processing. 
650 1 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
650 2 4 |a Marketing. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Statistics and Computing. 
700 1 |a Groenen, P. J. F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387505862 
776 0 8 |i Printed edition:  |z 9781441920461 
776 0 8 |i Printed edition:  |z 9780387251509 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-28981-X  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)