Cargando…

Shortest Connectivity An Introduction with Applications in Phylogeny /

The problem of "Shortest Connectivity" has a long and convoluted history: given a finite set of points in a metric space, search for a network that connects these points with the shortest possible length. This shortest network must be a tree and may contain vertices different from the poin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cieslik, Dietmar (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Combinatorial Optimization ; 17
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-23539-4
003 DE-He213
005 20220113083141.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387235394  |9 978-0-387-23539-4 
024 7 |a 10.1007/b101778  |2 doi 
050 4 |a T57.6-57.97 
050 4 |a T55.4-60.8 
072 7 |a KJT  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Cieslik, Dietmar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Shortest Connectivity  |h [electronic resource] :  |b An Introduction with Applications in Phylogeny /  |c by Dietmar Cieslik. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2005. 
300 |a IX, 268 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Combinatorial Optimization ;  |v 17 
505 0 |a Two Classical Optimization Problems -- Gauss' Question -- What Does Solution Mean? -- Network Design Problems -- A New Challenge: The Phylogeny -- An Analysis of Steiner's Problem in Phylogenetic Spaces -- Tree Building Algorithms. 
520 |a The problem of "Shortest Connectivity" has a long and convoluted history: given a finite set of points in a metric space, search for a network that connects these points with the shortest possible length. This shortest network must be a tree and may contain vertices different from the points which are to be connected. Over the years more and more real-life problems are given, which use this problem or one of its relatives as an application, as a subproblem or a model. This volume is an introduction to the theory of "Shortest Connectivity", as the core of the so-called "Geometric Network Design Problems", where the general problem can be stated as follows: given a configuration of vertices and/or edges, find a network which contains these objects, satisfies some predetermined requirements, and which minimizes a given objective function that depends on several distance measures. A new application of shortest connectivity is also discussed, namely to create trees which reflect the evolutionary history of "living entities". The aim in this graduate level text is to outline the key mathematical concepts that underpin these important questions in applied mathematics. These concepts involve discrete mathematics (particularly graph theory), optimization, computer science, and several ideas in biology. . 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Mathematical optimization. 
650 0 |a Mathematical models. 
650 0 |a Biomathematics. 
650 1 4 |a Operations Research, Management Science . 
650 2 4 |a Optimization. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mathematical and Computational Biology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387503431 
776 0 8 |i Printed edition:  |z 9780387235387 
776 0 8 |i Printed edition:  |z 9781461498537 
830 0 |a Combinatorial Optimization ;  |v 17 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b101778  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)