Cargando…

Reactive Search and Intelligent Optimization

Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optim...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Battiti, Roberto (Autor), Brunato, Mauro (Autor), Mascia, Franco (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Operations Research/Computer Science Interfaces Series, 45
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-09624-7
003 DE-He213
005 20230719191624.0
007 cr nn 008mamaa
008 110401s2009 xxu| s |||| 0|eng d
020 |a 9780387096247  |9 978-0-387-09624-7 
024 7 |a 10.1007/978-0-387-09624-7  |2 doi 
050 4 |a T57.6-57.97 
050 4 |a T55.4-60.8 
072 7 |a KJT  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Battiti, Roberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Reactive Search and Intelligent Optimization  |h [electronic resource] /  |c by Roberto Battiti, Mauro Brunato, Franco Mascia. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2009. 
300 |a X, 196 p. 74 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operations Research/Computer Science Interfaces Series,  |x 2698-5489 ;  |v 45 
505 0 |a Introduction: Machine Learning for Intelligent Optimization -- Reacting on the neighborhood -- Reacting on the Annealing Schedule -- Reactive Prohibitions -- Reacting on the Objective Function -- Reacting on the Objective Function -- Supervised Learning -- Reinforcement Learning -- Algorithm Portfolios and Restart Strategies -- Racing -- Teams of Interacting Solvers -- Metrics, Landscapes and Features -- Open Problems. 
520 |a Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optimization, a superset of Reactive Search, concerns online and off-line schemes based on the use of memory, adaptation, incremental development of models, experimental algorithms applied to optimization, intelligent tuning and design of heuristics. Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies. While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics. Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more. Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities and schemes for the automated tuning of these parameters. Anyone working in decision making in business, engineering, economics or science will find a wealth of information here. . 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 1 4 |a Operations Research, Management Science . 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Industrial and Production Engineering. 
700 1 |a Brunato, Mauro.  |e author.  |0 (orcid)0000-0002-7885-4255  |1 https://orcid.org/0000-0002-7885-4255  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Mascia, Franco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441934994 
776 0 8 |i Printed edition:  |z 9780387561097 
776 0 8 |i Printed edition:  |z 9780387096230 
830 0 |a Operations Research/Computer Science Interfaces Series,  |x 2698-5489 ;  |v 45 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-09624-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)